Journal of Organometallic Chemistry, 340 (1988) 153-160 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Reaktive E=C $(p-p)\pi$ -Systeme

XIII *. [2 + 4]-Cycloadditionen mit Selenocarbonyldifluorid als Dienophil

Joseph Grobe*, Duc Le Van und Joachim Welzel

Anorganisch-Chemisches Institut der Universität Münster, Wilhelm-Klemm-Strasse 8, D-4400 Münster (B.R.D.)

(Eingegangen den 3. August 1987)

Abstract

The Diels-Alder adducts 2-6 are prepared in good yields (67-98%) by [2 + 4] cycloaddition of the selenocarbonyldifluoride F₂C=Se (1) to a 1,3-diene e.g. isoprene, 2,3-dimethyl-1,3-butadiene, cyclopentadiene, pentamethylcyclopentadiene and 1,3-cyclohexadiene. The only by-product, (F₂CSe)_x, is formed by the polymerization of 1. The new compounds 2-6 are stable at room temperature; they have been characterized by elemental analysis (C, H) and by MS, NMR and IR spectroscopy.

* XII. Mitteilung: Vorstehende Arbeit [1].

0022-328X/88/\$03.50 © 1988 Elsevier Sequoia S.A.

Zusammenfassung

Die Umsetzungen von Selenocarbonyldifluorid $F_2C=Se$ (1) mit den 1,3-Dienen Isopren, 2,3-Dimethyl-1,3-butadien, Cyclopentadien, Pentamethylcyclopentadien und 1,3-Cyclohexadien führen in guten Ausbeuten (67–98%) zu den Diels-Alder-Addukten 2–6 (s. Abstract). Als einziges Nebenprodukt entsteht (F_2CSe)_x durch Polymerisation von 1. Die neuen Verbindungen 2–6 sind bei Raumtemperatur beständig und werden durch analytische (C, H) und spektroskopische Untersuchungen (MS, NMR, IR) charakterisiert.

Einleitung

Die Nutzung von Verbindungen mit C=E-Strukturelementen (E = N, O, S) für die Darstellung von Sechsring-Heterocyclen in Diels-Alder-analogen Reaktionen erlangt zunehmende Bedeutung [2]. In jüngster Zeit wurde dieses Syntheseprinzip auf weitere Heteroolefine wie Sila- [3], Germa- [4], Phospha- [5] und Arsaalkene [6] ausgedehnt. Die ersten erfolgreichen [2 + 4]-Cycloadditionen mit C=Se-Verbindungen als Dienophilen wurden 1986 beschrieben. Es handelt sich dabei um: (i) Abfangreaktionen von Selenoaldehyden mit 1,3-Dienen [7] und (ii) [2 + 4]-Cycloadditionen von an Übergangsmetall koordinierten Selenoaldehyden bzw. -ketonen [8].

Eine direkte Umsetzung isolierter Selenocarbonyl-Derivative mit 1,3-Dienen ist allerdings bisher nicht bekannt. Ursache dafür dürfte die grosse Labilität der reaktiven C=Se-Systeme sein. Eine erhöhte kinetische Stabilität erreicht man in der Regel durch Einführung sperriger oder elektronegativer Substituenten am sp^2 -hybridisierten C-Atom, z.B. t-Butyl, Mesityl bzw. Cl, F oder CF₃.

In Fortsetzung unserer Studien über die Eignung fluorhaltiger $E=C(p-p)\pi$ -Verbindungen [5d,6,9] als Dienophile berichten wir hier über Reaktionen des Selenocarbonyldifluorids $F_2C=Se$ (1) mit verschiedenen 1,3-Dienen.

Präparative Untersuchungen

Eine wichtige Voraussetzung für diese Untersuchungen ist die Gewinnung ausreichender Mengen des Selenocarbonyldifluorids $F_2C=Se$ (1). Seine Darstellung wurde vor einigen Jahren von Haas et al. [10] beschrieben und gelang durch kontrollierte Zersetzung von B(SeCF₃)₃ oder Hg(SeCF₃)₂. Beide Verfahren liefern neben 1 Polymere der Zusammensetzung (F_2CSe)_x und/oder Bis(trifluormethyl)diselan als Nebenprodukte. Eine günstigere Methode ist die von uns entwickelte Thermolyse des Trimethylstannyl-(trifluormethyl)selans, die 1 in quantitativer Ausbeute und hoher Reinheit verfügbar macht (Gl. 1) [11].

$$Me_{3}SnSeCF_{3} \xrightarrow{180-200 \circ C} F_{2}C = Se + Me_{3}SnF$$
(1)

1 wird in einer Falle bei -196 °C kondensiert und mit einer Mischung aus Deuterochloroform und überschüssigem 1,3-Dien unter rascher Erwärmung auf Raumtemperatur zur Reaktion gebracht. Die zunächst gelbe Lösung (ca. 20% $F_2C=Se$) entfärbt sich rasch; anschliessende NMR-Kontrollmessungen (¹H, ¹⁹F)

Fig. 1. Ergebnisse der Umsetzungen von 1 mit 1,3-Dienen.

bestätigen den Verbrauch der Reaktionspartner und die Bildung der [2+4]-Cycloaddukte. Für die 1,3-Diene Isopren, 2,3-Dimethyl-1,3-butadien, Cyclopentadien, Pentamethylcyclopentadien und 1,3-Cyclohexadien ergeben sich unter vergleichbaren Bedingungen Unterschiede in der Reaktionsgeschwindigkeit, erkennbar an der Entfärbung der Lösungen. Während die Umsetzung von 1 mit 2,3-Dimethyl-1,3-butadien bereits nach 4 s beendet ist, liegt bei der Reaktion mit 1,3-Cyclohexadien nach 10 min eine gerade nachweisbare Menge des Cycloadduktes 6 vor. Wie bei olefinischen Dienophilen lässt sich die Reaktion von 1 mit Cyclohexadien durch Zusatz der Lewis-Säure Aluminiumbromid erheblich beschleunigen, eine Massnahme, die allerdings mit Ausbeuteeinbussen verbunden ist, da der Katalysator auch die Polymerisation von 1 fördert. Mit AlBr₃ wird 6 innerhalb von 15 s in Ausbeuten von 67% gebildet. Für die Reaktivität der untersuchten 1,3-Diene gegenüber 1 ergibt sich folgende Abstufung: Cyclopentadien > 2,3-Dimethyl-1,3butadien, Isopren > Pentamethylcyclopentadien > 1,3-Cyclohexadien. Der konkurrierende Prozess der Polymerisation von 1 nimmt erwartungsgemäss in dieser Reihe an Bedeutung zu. Die Tatsache, dass in keinem Fall [2 + 2]-Cycloaddukte aus 1 und den angebotenen Dien-Partnern entstehen, spricht für einen Synchron-Mechanismus der Reaktion und bestätigt die nahe Verwandtschaft der Fluorheteroalkene (hier: F₂C=Se) mit Olefinen. Figur 1 fasst die Ergebnisse der Umsetzungen schematisch zusammen.

Die Identität der Produkte 2-6 ist durch analytische (C, H) und spektroskopische Untersuchungen (MS, NMR, IR) eindeutig gesichert. Die Selenine 2 und 3 fallen als klare, hochsiedende Flüssigkeiten, die Selenabicyclen 4-6 als farblose, sublimierbare Feststoffe an. Sie sind bei Raumtemperatur unter Ausschluss von Licht längere Zeit haltbar, zersetzen sich jedoch bei Erwärmung auf 65°C oder bei Bestrahlung unter Abscheidung von Selen und Bildung bisher nicht aufgeklärter Produktgemische.

Aus diesem Grund scheidet die Nutzung von $Me_3SnSeCF_3$ als Synthese-Äquivalent für $F_2C=Se(1)$ zur Darstellung der [2 + 4]-Cycloaddukte aus. Diese Alternative hat sich als Eintopf-Verfahren für die Synthese der Diels-Alder-Addukte von Fluorphospha- und -arsaalkenen gut bewährt [6,12].

Ein typisches Merkmal der [2 + 4]-Cycloaddition von Olefinen ist die Regiospezifität der Adduktbildung bei Verwendung unsymmetrisch substituierter Diene wie Isopren oder Piperylen [13]. Deshalb beansprucht die Umsetzung von 1 mit Isopren besonderes Interesse; sie führt zu einem 80/20-Gemisch zweier Isomerer 2a und 2b. Dem Hauptprodukt 2a ist auf Grund der NMR-Daten die Struktur mit zum Se-Atom *para*-ständiger Methylgruppe zuzuordnen. Das Heteroalken F₂C=Se zeigt also in Diels-Alder-Reaktionen eine mit Ethenderivaten vergleichbare Regiospezifität.

Spektroskopische Untersuchungen

Für die Charakterisierung der Cycloaddukte 2-6 erweist sich die NMR-Untersuchung als besonders hilfreich. Die Protonenresonanzspektren sind zwar kompliziert, besitzen aber typische Muster, die uns von den analogen Phospha- oder Arsa-Heterocyclen bekannt sind. Die ¹⁹F-NMR-Spektren der CF₂-Gruppe gehören generell zum AB-Typ, obwohl für die Mono- und Bicyclen sehr verschiedene Signalmuster resultieren. In den Seleninen 2 und 3 liegen wegen der Flexibilität der Ringe chemisch, aber nicht magnetisch äquivalente F-Kerne vor, so dass für beide die gleiche chemische Verschiebung resultiert. Die beobachteten Signalmuster (Tripletts aus Multipletts) ergeben sich durch Kopplung mit den Protonen der benachbarten CH₂-Gruppe und der weiteren C-Atome und sind charakteristisch für ein $J/v_0\delta$ -Verhältnis von etwa 5/1. Im Gegensatz dazu findet man bei den Bicyclen 4-6

Fig. 2. ¹⁹F-NMR-Spektren von 2a und 2b.

Fig. 3. ¹⁹F-NMR-Spektrum von 4.

typische AB-Signalmuster mit J_{AB} -Werten von 196 und 200 Hz, in denen bei 4 und 6 für das F-Atom F_A eine Dublettaufspaltung durch das benachbarte CH-Proton auffällt. Die Figuren 2 und 3 illustrieren die beiden Extremfälle des AB-Typs am Beispiel der Cycloaddukte 2 und 4. Mit Ausnahme des Isomeren 2b sind bei allen Verbindungen die ${}^{2}J$ (SeF)-Kopplungen bestimmbar; sie sind für die Bicyclen zwischen 5 und 25 Hz kleiner als für die Monocyclen.

Die ¹³C-NMR-Spektren sichern die aus den ¹H- und ¹⁹F-Resonanzdaten gewonnenen Informationen zusätzlich ab und ermöglichen im Fall der isomeren Cycloaddukte **2a** und **2b** die eindeutige Zuordnung der Strukturen. Erst mit Hilfe der INEPT-Messtechnik gelingt die Klärung der Position der Methylgruppe in **2a** und **2b**.

Weitere Informationen zur Identität der Verbindungen 2-6 ergeben sich aus den Massenspektren. Bei den Seleninen 2 und 3 tritt das Molekülion M^+ als Basispeak auf, ein Beweis für die Stabilität der Monocyclen. Die Selenabicyclen 4-6 zeigen zwar eine ähnliche Fragmentierung (Abspaltung von CH₃, HF und HSe) wie 2 und 3, die M^+ -Ionen treten jedoch mit wesentlich geringer Intensität (21-43%) auf. Basispeak sind die $[M - CF_2Se]^+$ -Ionen.

Die bandenreichen IR-Spektren stehen mit den übrigen Strukturdaten in Einklang; charakteristisch sind insbesondere die CF-Valenzschwingungen im Bereich von 1000 bis 1200 cm⁻¹.

Experimenteller Teil

Alle Operationen werden unter Luft- und Feuchtigkeitsausschluss mit Hilfe einer Standard-Hochvakuumapparatur durchgeführt. Die Ausgangsverbindung Trimethylstannyl-trifluoromethylselan wird nach einer früher beschriebenen Methode dargestellt [14]; die 1,3-Diene sind im Handel erhältlich.

NMR-Spektren: Bruker Analytische Messtechnik WH 90, AM 300 und WP 80; Lösungsmittel: CDCl₃, Messtemperatur: 28°C; 90 MHz ¹H-NMR relativ zu TMS, 84.66 MHz ¹⁹F-NMR relativ zu CCl₃F, 75.43 MHz ¹³C-NMR relativ zu TMS. Massenspektren: GC/MS-Kombination Varian 2700/MAT 111/Varian Computersystem 1400. Anregungsenergie: 80 eV; Daten bez. auf ⁸⁰Se. IR-Spektren: Perkin–Elmer-Spektrometer 683, KBr-Flüssigkeitszellen; Lösungsmittel: CCl₄. Mikroanalyse: C, H, N-Analysator der Fa. Perkin–Elmer.

Arbeitsvorschrift für die Darstellung der Cycloaddukte 2-6

3 mmol Trimethylstannyl-(trifluormethyl)selan werden bei 0.01 Torr durch ein mit Quarzwolle gefülltes Pyrolyserohr von 300 mm Länge und 20 mm Durchmesser gesaugt (Ofentemperatur: 180-200 °C). Nicht umgesetzte Ausgangsverbindung wird bei -78° C abgefangen und erneut thermolysiert. Das Selenocarbonyldifluorid 1 scheidet sich als gelbes Kondensat in einer nachgeschalteten, auf -196°C gekühlten Falle ab. Diese Kühlfalle dient auch als Reaktionsgefäss für die Umsetzung mit 1,3-Dienen und ist mit einem NMR-Röhrchen verbunden. Bei einer Pyrolysedauer von 2 h erhält man eine Ausbeute von ca. 1.2 mmol 1. Die Identität und die Reinheit von 1 werden durch NMR-spektroskopische Untersuchung geprüft. Zur Synthese der [2 + 4]-Cycloaddukte 2-6 wird eine Mischung aus 1,3-Dien und Chloroform (20% ige Lösung; 2.5 mmol Dien) zu dem frisch hergestellten 1 (1.2 mmol) kondensiert. Man überführt das Reaktionsgemisch in das NMR-Röhrchen und schmilzt dieses ab. Anschliessend wird die Mischung unter kräftigem Schütteln rasch von -196°C auf Raumtemperatur erwärmt. Die Reaktionszeit beträgt mit Ausnahme der Umsetzung von Cyclohexadien zwischen 4 und 15 s. Im Fall des Partners Cyclohexadien wird im Gefäss eine Spatelspitze wasserfreies Aluminiumbromid vorgelegt. Alle hier beschriebenen Selenaheterocyclen werden durch fraktionierte Kondensation gereinigt. Überschüssige 1,3-Diene werden in einer Falle bei -196°C gesammelt. Zur Isolierung der Produkte 2-6 dienen folgende Kühlbäder:

Verb.	2	3	4	5	6	
Bad. Temp. (°C)	- 50	-40	- 40	- 10	- 30	

Die Ausbeuten der gewünschten Addukte (bezogen auf das eingesetzte Selenocarbonyl 1) sind in Fig. 1 angegeben.

Analytische und spektroskopische Daten der Verbindungen 2–6

1,2,3,6-Tetrahydro-4-methyl-2,2-difluorselenin (2a). ¹H-NMR: δ 1.8 (s, CH₃), 2.7 (t, CH₂CF, ³J(FH) 14.4), 3.4 (m, CH₂Se), 5.7 (m, CH-olefinisch). ¹⁹F-NMR: δ -66.9 (t, m, ⁴J(FH) 3.0, ²J(SeF) 64.0). ¹³C{¹H}-NMR: δ 121.1 (t, C(2), ¹J(FC) 285.5), 43.0 (t, C(3), ²J(FC) 23.9), 134.0 (t, C(4), ³J(FC) 4.4), 118.0 (s, C(5)), 20.6 (s, C(6)), 24.2 (s, C(7)). GC/MS: m/z 198 (100%, M^+), 183 (8%, $M^+ -$ CH₃), 163 (6%, $M^+ -$ CH₃ – HF), 134 (23%, $M^+ -$ HF – C₂H₅), 117 (64%, $M^+ -$ HSe), 97 (37%, $M^+ -$ HSe – HF), 77 (38%, $M^+ -$ HSe – 2HF), 68 (34%, C₅H₈⁺). IR: ν (cm⁻¹) 2980m, 2930s, 1490s, 1440s, 1385m, 1375m, 1325s, 1300m, 1250vs, 1170vs, 1150s, 1100vs, 1075vs, 1045vs, 1005vs, 975m, 892vs, 685m, 622m. Gef.: C, 36.02; H, 4.16. C₆H₈F₂Se (197.09) ber.: C, 36.56; H, 4.09%.

1,2,3,6-Tetrahydro-5-methyl-2,2-difluorselenin (2b). ¹H-NMR eignet sich nicht zur Unterscheidung von 2a und 2b; MS- und IR-Daten sind praktisch identisch mit denen von 2a. ¹⁹F-NMR: δ -68.2 (t, m, ³J(FH) 23.9, ⁴J(FH) 2.9). ¹³C{¹H}-NMR:

 δ 38.6 (t, C(3), ²*J*(FC) 23.9), 126.8 (t, C(4)), 119.8 (s, C(5)), 20.6 (s, C(6)), 23.7 (s, C(7)).

1,2,3,6-Tetrahydro-4,5-dimethyl-2,2-difluorselenin (3). ¹H-NMR: δ 1.8 (s, CH₃), 2.7 (t, CH₂CF, ³J(FH) 14.4), 3.4 (s, br., CH₂Se). ¹⁹F-NMR: δ 64.3 (t, m, ⁴J(FH) 2.4, ²J(SeF) 66.0). ¹³C{¹H}-NMR: δ 131.8 (t, C(2), ¹J(FC) 283.9), 44.5 (t, C(3), ²J(FC) 22.3), 126.8 (t, C(4), ³J(FC) 4.3), 128.3 (s, C(5)), 26.3 (s, C(6)), 20.4 (s, C(7)), 18.8 (s, C(8)). GC/MS: m/z 212 (100%, M^+), 197 (29%, $M^+ -$ CH₃), 177 (10%, $M^+ -$ CH₃ - HF), 148 (12%, $M^+ -$ CH₃ - C₂H₅ - HF), 131 (42%, $M^+ -$ HSe), 111 (25%, $M^+ -$ HSe - HF), 91 (22%, $M^+ -$ HSe - 2HF), 82 (37%, C₆H₁₀⁺). IR: ν (cm⁻¹), 3050m, 2930s, 2880m, 1450s, 1430m, 1390m, 1360m, 1340s, 1260m, 1250s, 1235s, 1210s, 1175vs, 1140vs, 1115s, 1095vs, 1065vs, 1035vs, 990vs, 940s, 880vs, 690m, 675m, 615s. Gef.: C, 39.15; H, 4.77. C₇H₁₀F₂Se (211.21) ber.: C, 39.82; H, 4.77%.

3,3-Difluor-2-selenabicyclo[2.2.1]hept-5-en (4). ¹H-NMR: δ 4.5 (m, C(1)-H), 3.2(d, m, C(4)-H, ³J(FH) 10.0), 6.8(m, C(5)-H), 6.0(m, C(6)-H), 2.2(AB-System, m, C(7)-H, δ (H_A) 2.3, δ (H_B) 2.1); ¹⁹F-NMR: AB-System, δ (F_A) – 69.6(d, d, ³J(FH) 10.0), δ (F_B) – 78.4 (d), ²J(F_AF_B) 196.0, ²J(SeF) 50.0. ¹³C{¹H}-NMR: δ 52.6(s, C(1)), 149.6(t, C(3), ¹J(FC) 295.0), 55.7(t, C(4), ²J(FC) 19.0), 130.9(d, C(5), ³J(FC) 6.5), 144.2(d, C(6), ⁴J(FC) 4.0), 51.8(s, C(7)). GC/MS: m/z 196(25%, M^+), 115(54%, M^+ – HSe), 95(16%, M^+ – HSe – HF), 66(100%, C₅H₆⁺). IR: ν (cm⁻¹) 2980m, 2940m, 1340s, 1270vs, 1260s, 1170s, 1130vs, 1105s, 1075vs, 1030vs, 995m, 980s, 910m, 635m, 615m.

Die C/H-Analysen fallen trotz nachgewiesener Reinheit wahrscheinlich durch partielle Retrodien-Spaltung und Verlust von F₂CSe generell zu niedrig aus; Gef.: C, 30.50 bis 32.10; H, 2.54 bis 2.74. C₆H₆F₂Se (194.96) ber.: C, 36.96; H, 3.10%. Die Reinheit von 4 wurde zusätzlich durch ⁷⁷Se-NMR bestätigt: δ 562.9, rel. zu H₃CSeSeCH₃, (t), J(SeF) 47 ± 2.

3,3-Difluor-2-selenabicyclo[2.2.1]-1,4,5,6,7-pentamethylhept-5-en (5). ¹H-NMR: δ 0.7 (d, C(1)-CH₃), 1.2 (d, C(4)-CH₃), 1.6 (d, C(5)-CH₃), 1.5 (d, C(6)-CH₃), 0.6 (d, C(7)-CH₃), 2.6 (m, C(7)-H). ¹⁹F-NMR: AB-System, $\delta(F_A)$ -75.1 (d), $\delta(F_B)$ -82.7(d), ²J(F_AF_B) 200.0, ²J(SeF) 40.0. GC/MS: *m/z* 266 (43%, *M*⁺), 211 (2%, *M*⁺ - CH₃ - 2HF), 185 (4%, *M*⁺ - HSe), 136 (100%, C₅Me₅H⁺). IR: ν (cm⁻¹) 2980s, 2940s, 2920s, 2880m, 1660m, 1445s, 1380s, 1370m, 1315m, 1280m, 1185s, 1165vs, 1120vs, 1085s, 1075s, 1060vs, 1045vs, 1000s, 925vs, 730s, 665s, 450m. Gef.: C, 48.63; H, 5.93. C₁₁H₁₆F₂Se (265.20) ber.: C, 49.82; H, 6.08%.

3,3-Difluor-2-selenabicyclo[2.2.2]oct-5-en (6). ¹H-NMR: δ 4.1(s, br., C(1)-H), 3.2(s, br., C(4)-H), 6.2 (m, C(5)-H), 6.7 (m, C(6)-H), 1.5 (m, C(7)-H), 2.2 (m, br., C(8)-H). ¹⁹F-NMR: AB-System, $\delta(F_A) - 63.5$ (d, m), $\delta(F_B) - 79.3$ (d, m), ²J(F_AF_B) 200.0, ²J(SeF) 60.0. GC/MS: m/z 210 (21%, M^+), 129 (8%, $M^+ -$ HSe), 128 (13%, $M^+ - H_2$ Se), 109 (2%, $M^+ -$ HSe – HF), 80 (17%, C₆H₈⁺), 79 (100%, C₆H₇⁺). IR: ν (cm⁻¹) 3060m, 2966s, 2910m, 2880m, 2870s, 1465s, 1445s, 1370s, 1340s, 1320vs, 1280s, 1255s, 1035vs, 990vs, 955s, 885vs, 845vs, 720vs, 645s, 605s, 560m. Gef.: C, 39.00; H, 3.63. C₇H₈F₂Se (209.10) ber.: C, 40.21; H, 3.86%.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und dem Landesamt für Forschung Nordrhein-Westfalen für die finanzielle Unterstützung dieser Arbeiten.

Literatur

- 1 Mitteilung XII: J. Grobe, D. Le Van, W. Meyring, B. Krebs und M. Dartmann, J. Organomet. Chem., (vorstehende Arbeit); 340 (1988) 143.
- 2 S.M. Weinreb und R.R. Straub, Tetrahedron, 38 (1982) 3087.
- 3 P.R. Jones, T.F.O. Lim und R.A. Pierce, J. Am. Chem. Soc., 102 (1980) 4970; N. Wiberg und H. Köpf, J. Organomet. Chem., 315 (1986) 9.
- 4 N. Wiberg und Ch.K. Kim, Chem. Ber., 119 (1986) 2980.
- 5 (a) R. Appel, F. Knoch und R. Zimmermann, Chem. Ber., 118 (1985) 814; (b) A. Meriem, J.P. Majoral, M. Revel und J. Navech, Tetrahedron Lett., (1983) 1975; (c) Y.Y.C. Yeung Lam Ko und R. Carrié, J. Chem. Soc., Chem. Commun., (1984) 1640; R. Appel, J. Menzel und F. Knoch, Chem. Ber., 118 (1985) 4068; (d) J. Grobe und D. Le Van, Z. Naturforsch. B, 40 (1985) 467.
- 6 J. Grobe und D. Le Van, J. Organomet. Chem., 311 (1986) 37.
- 7 G.A. Krafft und P.T. Meinke, J. Am. Chem. Soc., 108 (1986) 1314; G.W. Kirby und A.N. Trethewey, J. Chem. Soc., Chem. Commun., (1986) 1152.
- 8 H. Fischer, U. Gerbing, J. Riede und R. Benn, Angew. Chem., 98 (1986) 80.
- 9 M. Binnewies, J. Grobe und D. Le Van, Z. Naturforsch. B, 40 (1985) 927.
- A. Haas, B. Koch und N. Welcman, Z. Anorg. Allg. Chem., 427 (1976) 114; A. Haas, A. Darmadi und B. Koch, Z. Naturforsch. B, 35 (1980) 526.
- 11 J. Grobe und D. Le Van, Angew. Chem., 96 (1984) 716; M. Binnewies, J. Grobe und D. Le Van, Phosphorus and Sulfur, 21 (1985) 349.
- 12 J. Grobe und D. Le Van, Tetrahedron Lett., (1985) 3681.
- 13 J. Sauer und R. Sustmann, Angew. Chem., 92 (1980) 773.
- 14 P. Dehnert, J. Grobe und D. Le Van, Z. Naturforsch. B, 36 (1981) 41.